Special Sale on Power Plant Project Finance Models (Deterministic and Stochastic) – Renewable, Conventional, Fossil, Nuclear and Waste Heat Recovery Technologies

Special Sale on Power Plant Project Finance Models (Deterministic and Stochastic) – Renewable, Conventional, Fossil, Nuclear and Waste Heat Recovery

=============================================

NEWS FLASH JUST NOW.

YOU CAN NOW ORDER AND PURCHASE DETERMINISTIC AND STOCHASTIC (MCS) PROJECT FINANCE MODELS IN UNITED STATES DOLLAR (USD).

HERE ARE SOME EXAMPLE DEMO (LOCKED) MODELS:

ADV Biomass Cogeneration Model3 (demo) – in PHP

ADV Biomass Cogeneration Model3 (demo) (USD)

ADV Biomass Cogeneration Model3_MCS (demo) – in PHP

ADV Biomass Cogeneration Model3_MCS (demo) (USD)

ADV Biomass Direct Combustion Model3 (demo) – in PHP

ADV Biomass Direct Combustion Model3 (demo) (USD)

ADV Biomass Direct Combustion Model3_MCS (demo) – in PHP

ADV Biomass Direct Combustion Model3_MCS (demo) (USD)

 

FOR OTHER POWER GENERATION TECHNOLOGIES, YOU MAY ORDER AND PURCHASE BY EMAIL AT:

energydataexpert@gmail.com

AND SPECIFY YOUR TYPE OF MODEL. YOU MAY ALSO INCLUDE IN YOUR EMAIL YOUR SAMPLE INPUTS SO I CAN IMMEDIATELY CUSTOMIZE YOUR MODEL FOR FREE.

Installed capacity:

Unit capacity, MW/unit = 50.00

No. of units = 1

Net capacity factor (NCF):

Availability, % of time or days down = 97.08% or 11 days off-line

Load Factor, % of gross capacity = 95.00%

Own Use, % of gross capacity = 10.00%

Net capacity factor target, % = 83.00%

All-in Capital and Operating & Maintenance (O&M) costs:

All-in capital cost target, ‘000 USD or USD/kW = 4,114

Fixed O&M cost target, USD/kW/year = 105.63

Variable O&M cost target, USD/MWh = 5.26

G&A cost target, ‘000 USD/year = 10.00

Balance Sheet accounts:

Salvage value = 5% of original value

Days receivable, days = 30

Days payable, days = 30

Days inventory (fuel, lubes, supplies) = 60

Depreciation period (straight line), years = 20

Refurbishment cost (% of EPC as overhaul cost) = 10%

Timing of Refurbishment (year from COD) = 10

Local Component (LC) and Foreign Components (FC):

Target local cost (LC), % of all-in capital cost = 59.2%

Target foreign cost (FC), % of all-in capital cost = 100.0 – 59.2 = 40.8

Note: local CAPEX to be funded by local debt

foreign CAPEX to be funded by foreign debt

Local and Foreign Debt:

Local and foreign debt upfront legal & financing fees = 2.00%

Local and foreign commitment fees = 0.50 p.a.

Local and Foreign Grace Period from COD, months = 6

Local and Foreign debt Service Reserve (DSR), months = 6

Local Debt All-in Interest Rate excluding tax =10.00% p.a.

Local Debt Payment Period (from end of GP), years = 10

Foreign Debt All-in Interest Rate excluding tax =10.00% p.a.

Foreign Debt Payment Period (from end of GP), years = 10

Capital structure and target IRR:

Debt ratio target, % of total capital = 70%

Equity ratio target, % of total capital = 100% – 70% = 30%

Target IRR = 16.44% p.a.

Tax Regime:

Income tax holiday (ITH) = 7 years (pay income tax on 8th year)

Income tax rate (after ITM) = 10% of taxable income

Property tax rate (from COD) = 1.5%

Property tax valuation rate (% of NBV) = 80%

Local business tax (% of revenue) = 1.0%

Government share for RE (from COD) = 1.0% of revenues – cost of goods sold

ER 1-94 contribution, PHP/kWh sold = 0.01 (to DOE)

Withholding Tax on Interest (Foreign Currency) – WHT = 10%

Gross Receipts Tax on Interest (Local Currency) – GRT = 5%

Documentary Stamps Tax (DST) = 0.5% (not used)

PEZA incentives (income tax rate from COD) = 5% (if used)

Royalty = 1.5% (if used in mini-hydro)

VAT on importation = 12%

VAT recovery rate = 70%

Timing of VAT recovery (years after COD) = 5

Customs duty = 0%

Flags (Switches):

Biomass Fuel switch (1 = yes, 0 = no) = 1

Type of incentives (1 = NO, 2 = BOI, 3 = PEZA) = 2

Value added tax (0 = NO, 1 VAT) = 0 for renewable energy (RE)

Timing:

Construction period (from FC), months = 24

Operating period (from COD) = 20 years (maximum 30)

Years from base year CPI for CAPEX estimates = 1 (usually zero)

Years from base year CPI for OPEX estimates = 1 (usually zero)

Exchange Rate and Inflation:

Base foreign exchange rate, PHP/USD = 50.00

Forward foreign exchange rate, PHP/USD = 50.00

OPEX inflation (CPI): to model real vs. nominal analysis

Local inflation (CPI) = 0.0% p.a. (real analysis)

Foreign inflation (CPI) = 0.0% p.a. (real analysis)

CAPEX inflation (CPI): to model construction delay

Local inflation (CPI) = 4.0% p.a. (escalation of local CAPEX)

Foreign inflation (CPI) = 2.0% p.a. (escalation of foreign CAPEX)

Power plant footprint:

Plant footprint, hectares = 50.00

Price of land (purchase), PHP/m2 = 28.65 (land is purchase)

Land area (lease), m2 = 500,000

Land lease rate , PHP/m2/year = 0.00 (no land lease)

Fuel properties and cost:

Density of solid fuel, kg/MT = 1,000 (for solid biomass)

Density of liquid fuel, kg/L = 0.966 (for liquid fuel oil or bunker)

Cost of bagasse = 1,988 PHP/MT (at 2,275 kcal/kg) at 30% blend

Cost of rice hull = 1,000 PHP/MT (at 3,150 kcal/kg) at 70% blend

Average cost of solid fuel = 1,299 PHP/MT (biomass)

Average cost of liquid fuel = 34.84 PHP/L (fuel oil)

Average heating value of solid fuel, Btu/lb = 5,198 (biomass)

Average heating value of liquid fuel, Btu/lb = 19,500 (fuel oil)

Power plant thermal efficiency or plant heat rate:

Plant heat rate (at 100% efficiency) = 3,600/1.05506 = 3,412 Btu/kWh

Plant heat rate (Btu of GHV per kWh gross) = 12,186

Target Thermal efficiency = 3,412/12,186 = 28.00%

=============================================

This is a special offer for the entire year of 2018. For the price of a deterministic model, you get a free copy of a stochastic model.

Our company (OMT Energy Enterprises) can also provide customization services to provide you with power plant project finance models with fixed inputs (deterministic models) as well as random inputs (stochastic models).

If you have an existing model which you want to be audited or upgraded to have stochastic modeling capability, you may also avail of our services at an hourly rate of USD200 per hour for a maximum of 5 hours of charge for customization services.

Use the deterministic model to determine project feasibility, e.g. given first year tariff, determine the equity and project returns (NPV, IRR, PAYBACK), or given the equity or project target returns, determine the first year tariff.

Use the stochastic model to determine project risks during the project development stage. By varying the estimation error on the independent variable (+10% and -10%) and conducting 1,000 random trials, this model will show the upper limit of the estimation error so that the dependent variables will converge to a real value (no error).

A pre-feasibility study has a +/- 15-20% estimation error on the independent variables using rule-of-thumb values.

A detailed feasibility study has a +/- 10-15% estimation error on the independent variables using reasonable estimates guided by internet research on suppliers of equipment.

A final bankable feasibility study has a +/- 5-10% estimation error on the independent variables using EPC contractor and OEM supplier bids.

In the case of fuel oil (bunker) genset, for instance, the estimation error on the independent variables should be less than +3% and -3% so that the dependent variables will converge to a real value.

The model inputs consist of the fixed inputs (independent variables) plus a random component as shown below (based on +/- 10% range, which you can edit in the Sensitivity worksheet):

1) Plant availability factor (% of time) = 94.52% x ( 90% + (110% – 90%) * RAND() )

2) Fuel heating value (GHV) = 5,198 Btu/lb x ( 90% + (110% – 90%) * RAND() )

3) Plant capacity per unit = 12.00 MW/unit x ( 90% + (110% – 90%) * RAND() )

4) Variable O&M cost (at 5.26 $/MWh) = 30.05 $000/MW/year x ( 90% + (110% – 90%) * RAND() )

5) Fixed O&M cost (at 105.63 $/kW/year) = 1,227.64 $000/unit/year x ( 90% + (110% – 90%) * RAND() )

6) Fixed G&A cost = 10.00 $000/year x ( 90% + (110% – 90%) * RAND() )

7) Cost of fuel = 1.299 PHP/kg x ( 90% + (110% – 90%) * RAND() )

8) Plant heat rate = 12,186 Btu/kWh x ( 90% + (110% – 90%) * RAND() )

9) Exchange rate = 43.00 PHP/USD x ( 90% + (110% – 90%) * RAND() )

10) Capital cost = 1,935 $/kW x ( 90% + (110% – 90%) * RAND() )

The dependent variables that will be simulated using Monte Carlo Simulation and which a distribution curve (when you make bold font the number of random trials) may be generated are as follows:

1) Equity Returns (NPV, IRR, PAYBACK) at 30% equity, 70% debt

2) Project Returns (NPV, IRR, PAYBACK) at 100% equity, 0% debt

3) Net Profit After Tax

4) Pre-Tax WACC

5) Electricity Tariff (Feed-in-Tariff)

The following deterministic (fixed inputs) and stochastic (random inputs using Monte Carlo Simulation) models may be downloaded for only USD1,400.

Before you can run the MCS model, you need to download first the Monte Carlo Simulation add-in and run it before running the MCS model:

MonteCarlito_v1_10

The models for renewable, conventional, fossil, nuclear, energy storage, and combined heat and power (CHP) project finance models are based on a single template so that you can prioritize which power generation technology to apply in a given application for more detailed design and economic study.

The models below are in Philippine Pesos (PHP) and may be converted to any foreign currency by inputting the appropriate exchange rate (e.g. 1 USD = 1.0000 USD; 1 USD = 50.000 PHP, 1 USD = 3.800 MYR, etc.). Then do a global replacement in all worksheets of ‘PHP’ with ‘XXX’, where ‘XXX’ is the foreign currency of the model.

RENEWABLE ENERGY

process heat (steam) and power

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-cogeneration-project-finance-model-ver-3/

bagasse, rice husk or wood waste fired boiler steam turbine generator

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-direct-combustion-project-finance-model-ver-3/

gasification (thermal conversion in high temperature without oxygen or air)

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-gasification-project-finance-model-ver-3/

integrated gasification combined cycle (IGCC) technology

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-igcc-project-finance-model-ver-3/

waste-to-energy (WTE) technology for municipal solid waste (MSW) disposal and treatment

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-waste-to-energy-wte-project-finance-model-ver-3-2/

waste-to-energy (WTE) pyrolysis technology

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-waste-to-energy-wte-pyrolysis-project-finance-model-ver-3/

run-of-river (mini-hydro) power plant

http://energydataexpert.com/shop/power-generation-technologies/advanced-mini-hydro-run-of-river-project-finance-model-ver-3/

concentrating solar power (CSP) 400 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-concentrating-solar-power-csp-project-finance-model-ver-3/

solar PV technology 1 MW Chinese

http://energydataexpert.com/shop/power-generation-technologies/advanced-solar-photo-voltaic-pv-project-finance-model-ver-3-1-mw/

solar PV technology 25 MW European and Non-Chinese (Korean, Japanese, US)

http://energydataexpert.com/shop/power-generation-technologies/advanced-solar-photo-voltaic-pv-project-finance-model-ver-3-25-mw/

includes 81 wind turbine power curves from onshore WTG manufacturers

http://energydataexpert.com/shop/power-generation-technologies/advanced-onshore-wind-energy-project-finance-model-ver-3-copy/

includes 81 wind turbine power curves from offshore WTG manufacturers

http://energydataexpert.com/shop/power-generation-technologies/advanced-offshore-wind-project-finance-model-ver-3/

ocean thermal energy conversion (OTEC) technology 10 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-ocean-thermal-energy-conversion-otec-10-mw-project-finance-model-ver-3/

ocean thermal energy conversion (OTEC) technology 50 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-ocean-thermal-energy-conversion-otec-project-finance-model-ver-3-50-mw/

CONVENTIONAL, FOSSIL AND NUCLEAR ENERGY

geothermal power plant 100 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-geo-thermal-project-finance-model-ver-3/

large hydro power plant 500 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-large-hydro-impoundment-project-finance-model-ver-3/

subcritical circulating fluidized bed (CFB) technology 50 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-coal-fired-circulating-fluidized-cfb-project-finance-model-ver-3-50-mw/

subcritical circulating fluidized bed (CFB) technology 135 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-coal-fired-circulating-fluidized-bed-cfb-project-finance-model-ver-3-135-mw/

subcritical pulverized coal (PC) technology 400 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-pulverized-coal-pc-subcritical-project-finance-model-ver-3/

supercritical pulverized coal (PC) technology 500 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-pulverized-coal-pc-supercritical-project-finance-model-ver-3/

ultra-supercritical pulverized coal (PC) technology 650 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-pulverized-coal-pc-ultrasupercritical-project-finance-model-ver-3/

diesel-fueled genset (compression ignition engine) technology 50 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-diesel-genset-project-finance-model-ver-3-copy/

fuel oil (bunker oil) fired genset (compression ignition engine) technology 100 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-fuel-oil-genset-project-finance-model-ver-3-copy-2/

fuel oil (bunker oil) fired oil thermal technology 600 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-fuel-oil-thermal-project-finance-model-ver-3/

natural gas combined cycle gas turbine (CCGT) 500 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-natgas-fired-combined-cycle-gas-turbine-ccgt-project-finance-model-ver-3/

natural gas simple cycle (open cycle) gas turbine (OCGT) 70 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-natgas-fired-open-cycle-gas-turbine-ocgt-project-finance-model-ver-3/

natural gas thermal 200 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-natgas-fired-thermal-project-finance-model-ver-3/

petroleum coke (petcoke) fired subcritical thermal 220 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-petcoke-thermal-power-plant-project-finance-model-ver-3/

nuclear (uranium) pressurized heavy water reactor (PHWR) technology 1330 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-nuclear-power-phwr-project-finance-model-ver-3/

WASTE HEAT RECOVERY BOILER (DIESEL genset; GASOLINE genset; PROPANE, LPG or NATURAL GAS simple cycle)

combined heat and power (CHP) circulating fluidized bed (CFB) technology 50 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-coal-fired-cfb-combined-heat-and-power-chp-project-finance-model-ver-3/

diesel genset (diesel, gas oil) and waste heat recovery boiler 3 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-diesel-fired-genset-combined-heat-and-power-chp-project-finance-model-ver-3/

fuel oil (bunker) genset and waste heat recovery boiler 3 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-bunker-fired-genset-combined-heat-and-power-chp-project-finance-model-ver-3/

gasoline genset (gasoline, land fill gas) and waste heat recovery boiler 3 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-gasoline-fired-genset-combined-heat-and-power-chp-project-finance-model-ver-3/

simple cycle GT (propane, LPG) and waste heat recovery boiler 3 MW (e.g. Capstone)

http://energydataexpert.com/shop/power-generation-technologies/advanced-lpg-fired-genset-combined-heat-and-power-chp-project-finance-model-ver-3/

simple cycle GT (natural gas, land fill gas) and waste heat recovery boiler 3 MW (e.g. Capstone)

http://energydataexpert.com/shop/power-generation-technologies/advanced-natgas-fired-genset-combined-heat-and-power-chp-project-finance-model-ver-3/

Cheers,

Your energy technology selection and project finance modeling expert

 

One thought on “Special Sale on Power Plant Project Finance Models (Deterministic and Stochastic) – Renewable, Conventional, Fossil, Nuclear and Waste Heat Recovery Technologies

  1. LastMargart

    I see you don’t monetize your page, don’t waste your traffic, you can earn extra cash every month because you’ve got
    high quality content. If you want to know how to make extra $$$, search for:
    Mertiso’s tips best adsense alternative

Leave a Reply

Your email address will not be published. Required fields are marked *